Homework Set 7

(sect 4.1 - 4.3)

1. Let *V* be the set of points inside and on the unit circle in the *xy*-plane. That means, let $V = \{ \begin{bmatrix} x \\ y \end{bmatrix} : x^2 + x^2 \le 1 \}$. Find a specific example—two vectors or a vector and a scalar—to show that *V* is not a subspace of \mathbb{R}^2 .

2. Let *W* be the set of all vectors of the form $\begin{bmatrix} 2t \\ 0 \\ -t \end{bmatrix}$. Show that *W* is a subspace of \mathbb{R}^3 .

3. Let H be the set of all vectors of the form $\begin{bmatrix} 5b + 2c \\ b \\ c \end{bmatrix}$, where *b* and *c* are arbitrary real numbers. Find **u** and **v** such that $H = span\{u, v\}$. Why does this show that *H* is a subspace of \mathbb{R}^3 ?

4. Let
$$\boldsymbol{v_1} = \begin{bmatrix} 1\\0\\-1 \end{bmatrix}$$
, $\boldsymbol{v_2} = \begin{bmatrix} 2\\1\\3 \end{bmatrix}$, $\boldsymbol{v_3} = \begin{bmatrix} 4\\2\\6 \end{bmatrix}$, and $\boldsymbol{w} = \begin{bmatrix} 3\\1\\2 \end{bmatrix}$.

- a. Is $w \text{ in } \{v_1, v_2, v_3\}$? How many vectors are in $\{v_1, v_2, v_3\}$?
- b. How many vectors are in $Span\{v_1, v_2, v_3\}$?
- c. Is w in the subspace spanned by $\{v_1, v_2, v_3\}$? Why?
- 5. Let K be the set of all vectors of the form $\begin{bmatrix} 4a+3b\\0\\a+b+c\\c-2a \end{bmatrix}$, where *a*, *b*, and *c* are arbitrary real numbers. Show that K is a subspace of \mathbb{R}^4 , or give an example to show that K is not a subspace.

6. Determine if
$$w = \begin{bmatrix} 5 \\ -3 \\ 2 \end{bmatrix}$$
 is in *Nul(A)* (ie: the Null Space of *A*), where $A = \begin{bmatrix} 5 & 21 & 19 \\ 13 & 23 & 2 \\ 8 & 14 & 1 \end{bmatrix}$

7. Show that W is a vector space, or find a specific example which shows how W fails to be (ra_1)

a vector space.
$$W = \begin{cases} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} : \begin{array}{c} a+3b=c \\ a+b+c=d \end{cases}$$

8. Find A such that the given set is Col(A) (ie: the Column Space of A).

$$\left\{ \begin{bmatrix} 2s+3t\\r+s-2t\\4r+s\\3r-s-t \end{bmatrix} : r, s, and t are real \right\}$$

9. Find *k* such that Nul(A) is a subspace of \mathbb{R}^k , and find *l* such that Col(A) is a subspace of \mathbb{R}^l , where $A = \begin{bmatrix} 7 & -2 & 0 \\ -2 & 0 & -5 \\ 0 & -5 & 7 \\ -5 & 7 & -2 \end{bmatrix}$

10. Let
$$A = \begin{bmatrix} -8 & -2 & -9 \\ 6 & 4 & 8 \\ 4 & 0 & 4 \end{bmatrix}$$
 and $\boldsymbol{w} = \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix}$. Determine if \boldsymbol{w} is in $Col(A)$. Is \boldsymbol{w} in $Nul(A)$?

For questions 11 and 12, state whether the sets are bases for \mathbb{R}^3 or not. If not, determine whether the set is linearly independent or if the set spans \mathbb{R}^3 .

- $11. \begin{bmatrix} 2\\-2\\1 \end{bmatrix}, \begin{bmatrix} 1\\-3\\2 \end{bmatrix}, \begin{bmatrix} -7\\5\\4 \end{bmatrix}$
- $12. \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix}, \begin{bmatrix} -4 \\ -5 \\ 6 \end{bmatrix}$

	[1	0	-3	2]	
13. Find a basis for the Null Space of the matrix:	0	1	-5	4	
	L3	-2	1	-2]	

14. Assume that A is row equivalent for B. Find the bases for Nul(A) and Col(A).

$$A = \begin{bmatrix} -2 & 4 & -2 & -4 \\ 2 & -6 & -3 & 1 \\ -3 & 8 & 2 & -3 \end{bmatrix}, \text{ and } B = \begin{bmatrix} 1 & 0 & 6 & 5 \\ 0 & 2 & 5 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

15. Find a basis for the space spanned by the given vectors: